Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(45): 101927-101932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674065

RESUMO

The relationships among the relative abundance of guild-plant pathogenic fungi, compost maturation index, and microbial community variation during vegetable waste composting, which are influenced by the C/N ratio, remain poorly understood. To address this, fungal communities were analyzed in composting treatments with C/N ratios of approximately 15 (CN15) and 25 (CN25), using vegetable waste as the primary raw material. The CN15 treatment showed greater microbial community variation and a better overall compost maturation index value than the CN25 treatment. However, the CN25 treatment had a greater decline in plant-pathogenic fungi than the CN15 treatment. Notably, the relative abundance of guild-plant pathogenic fungi was significantly negatively related to the compost maturity index in the CN25 treatment, while no significant relationship was observed in the CN15 treatment. This study suggests that the moderately delayed maturation of composting is beneficial for reducing guild-plant pathogenic fungi in vegetable waste.


Assuntos
Compostagem , Verduras , Solo , Fungos , Plantas
2.
NPJ Biofilms Microbiomes ; 9(1): 46, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407614

RESUMO

The soil microbiota is critical to plant performance. Improving the ability of plant-associated soil probiotics is thus essential for establishing dependable and sustainable crop yields. Although fertilizer applications may provide an effective way of steering soil microbes, it is still unknown how the positive effects of soil-borne probiotics can be maximized and how their effects are mediated. This work aims to seek the ecological mechanisms involved in cabbage growth using bio-organic fertilizers. We conducted a long-term field experiment in which we amended soil with non-sterilized organic or sterilized organic fertilizer either containing Trichoderma guizhouense NJAU4742 or lacking this inoculum and tracked cabbage plant growth and the soil fungal community. Trichoderma-amended bio-organic fertilizers significantly increased cabbage plant biomass and this effect was attributed to changes in the resident fungal community composition, including an increase in the relative abundance and number of indigenous soil growth-promoting fungal taxa. We specifically highlight the fundamental role of the biodiversity and population density of these plant-beneficial fungal taxa in improving plant growth. Together, our results suggest that the beneficial effects of bio-organic fertilizer seem to be a combination of the biological inoculum within the organic amendment as well as the indirect promotion through effects on the diversity and composition of the soil resident plant-beneficial fungal microbiome.


Assuntos
Solo , Trichoderma , Fertilizantes/análise , Microbiologia do Solo , Biodiversidade
3.
ISME J ; 17(6): 931-942, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037925

RESUMO

Beneficial interactions between plants and rhizosphere microorganisms are key determinants of plant health with the potential to enhance the sustainability of agricultural practices. However, pinpointing the mechanisms that determine plant disease protection is often difficult due to the complexity of microbial and plant-microbe interactions and their links with the plant's own defense systems. Here, we found that the resistance level of different banana varieties was correlated with the plant's ability to stimulate specific fungal taxa in the rhizosphere that are able to inhibit the Foc TR4 pathogen. These fungal taxa included members of the genera Trichoderma and Penicillium, and their growth was stimulated by plant exudates such as shikimic acid, D-(-)-ribofuranose, and propylene glycol. Furthermore, amending soils with these metabolites enhanced the resistance of a susceptible variety to Foc TR4, with no effect observed for the resistant variety. In total, our findings suggest that the ability to recruit pathogen-suppressive fungal taxa may be an important component in determining the level of pathogen resistance exhibited by plant varieties. This perspective opens up new avenues for improving plant health, in which both plant and associated microbial properties are considered.


Assuntos
Agricultura , Rizosfera , Solo , Fungos/genética , Raízes de Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Microbiologia do Solo
4.
Environ Sci Pollut Res Int ; 30(24): 66157-66169, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097572

RESUMO

The role of plant genotype in determining the assembly of soil microorganisms is widely accepted; however, the effects of cropping with different cultivars of perennial crop plants on the composition of soil microbial communities are not fully understood. In the current study, high-throughput amplicon sequencing and real-time PCR were used to investigate the major features of bacterial community composition, ecological networks, and soil physicochemical properties in three replicate pear orchards, each planted with monocultures of pear cultivars Hosui (HS) or Sucui (SC) of similar ages. A distinct difference in the composition of microbial communities was observed between soils of HS and SC orchards. A significantly greater relative abundance of Verrucomicrobia and Alphaproteobacteria whereas a significantly lower relative abundance of Betaproteobacteria were found in soils of HS cropped orchards than that in SC orchards. Sphingomonas sp., belonging to the Alphaproteobacteria, was recognized as a key species in the co-occurrence network of the microbial interactions. Moreover, redundancy analysis, the Mantel correlation test, and random forest analysis showed that soil pH was the dominant driver in determining microbial community composition in HS soils, whereas soil organic matter was the primary factor determining microbial community composition in SC soils. Altogether, we provide evidence that soils in HS orchards harbor unique microbial communities enriched with respect to microbial groups associated with nutrient cycling, whereas soils in SC orchards are dominated by a group of beneficial microbes exhibiting plant growth promotion. These findings have implications for science-based guidance for manipulation of the soil microbiome to achieve sustainable food production.


Assuntos
Alphaproteobacteria , Microbiota , Pyrus , Solo/química , Microbiologia do Solo , Plantas
5.
Microbiol Spectr ; : e0352522, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786644

RESUMO

Members of the microbiotas colonizing the plant endophytic compartments and the surrounding bulk and rhizosphere soil play an important role in determining plant health. However, the relative contributions of the soil and endophytic microbiomes and their mechanistic roles in achieving disease suppression remain elusive. To disentangle the relative importance of the different microbiomes in the various plant compartments in inhibiting pathogen infection, we conducted a field experiment to track changes in the composition of microbial communities in bulk and rhizosphere soil and of root endophytes and leaf endosphere collected from bananas planted on Fusarium-infested orchards in disease-suppressive and disease-conducive soils. We found that the rhizosphere and roots were the two dominant plant parts whose bacterial communities contributed to pathogen suppression. We further observed that Pseudomonas was potentially a key organism acting as a pathogen antagonist, as illustrated by microbial community composition and network analysis. Subsequently, culturable pathogen-antagonistic Pseudomonas strains were isolated, and their potential suppressive functions or possible antibiosis in terms of auxin or siderophore synthesis and phosphate solubilization were screened to analyze the mode of action of candidate disease-suppressive Pseudomonas strains. In a follow-up in vivo and greenhouse experiment, we revealed that microbial consortia of culturable Pseudomonas strains P8 and S25 (or S36), isolated from banana plantlet rhizosphere and roots, respectively, significantly suppressed the survival of pathogens in the soil, manipulated the soil microbiome, and stimulated indigenous beneficial microbes. Overall, our study demonstrated that root-associated microbiomes, especially the antagonistic Pseudomonas sp. components, contribute markedly to soil suppression of banana Fusarium wilt. IMPORTANCE Soil suppression of Fusarium wilt disease has been proven to be linked with the local microbial community. However, the contribution of endophytic microbes to disease suppression in wilt-suppressive soils remains unclear. Moreover, the key microbes involving in Fusarium wilt-suppressive soils and in the endophytic populations have not been fully characterized. In this study, we demonstrate that root-associated microbes play vitally important roles in disease suppression. Root-associated Pseudomonas consortia were recognized as a key component in inhibiting pathogen abundance associated with the host banana plants. This finding is crucial to developing alternate strategies for soilborne disease management by harnessing the plant microbiome.

6.
New Phytol ; 238(3): 1198-1214, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740577

RESUMO

Host-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum. High-throughput sequencing was complemented with cultivation-based methods to follow changes in fungal microbiome and explore potential links with plant health. Trichoderma application increased banana biomass by decreasing disease incidence by up to 72%, and this effect was attributed to changes in fungal microbiome, including the reduction in Fusarium oxysporum density and enrichment of pathogen-suppressing fungi (Humicola). These changes were accompanied by an expansion in microbial carbon resource utilization potential, features that contribute to disease suppression. We further demonstrated the disease suppression actions of Trichoderma-Humicola consortia, and results suggest niche overlap with pathogen and induction of plant systemic resistance may be mechanisms driving the observed biocontrol effects. Together, we demonstrate that fungal inoculants can modify the composition and functioning of the resident soil fungal microbiome to suppress soilborne disease.


Assuntos
Fusarium , Musa , Trichoderma , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solo , Musa/microbiologia
7.
One Health ; 16: 100481, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36683960

RESUMO

The rhizosphere is an extremely important component of the "one health" scenario by linking the soil microbiome and plants, in which the potential enrichment of antibiotic resistance genes (ARGs) might ultimately flow into the human food chain. Despite the increased occurrence of soil-borne diseases, which can lead to increased use of pesticides and antibiotic-producing biocontrol agents, the understanding of the dynamics of ARG spread in the rhizosphere is largely overlooked. Here, tomato seedlings grown in soils conducive and suppressive to the pathogen Ralstonia solanacearum were selected as a model to investigate ARG spread in the rhizosphere with and without pathogen invasion. Metagenomics data revealed that R. solanacearum invasion increased the density of ARGs and mobile genetic elements (MGEs). Although we found ARGs originating from human pathogenic bacteria in both soils, the enrichment was alleviated in the suppressive soil. In summary, the suppressive soil hindered ARG spread through pathogen suppression and had a lower number of taxa carrying antibiotic resistance.

8.
J Adv Res ; 47: 1-12, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35907631

RESUMO

INTRODUCTION: The soil bacterial microbiome plays a crucial role in ecosystem functioning. The composition and functioning of the microbiome are tightly controlled by the physicochemical surrounding. Therefore, the microbiome is responsive to management, such as fertilization, and to climate change, such as extreme drought. It remains a challenge to retain microbiome functioning under drought. OBJECTIVES: This work aims to reveal if fertilization with organic fertilizer, can enhance resistance and resilience of bacterial communities and their function in extreme drought and subsequent rewetting compared with conventional fertilizers. METHODS: In soil mesocosms, we induced a long-term drought for 80 days with subsequent rewetting for 170 days to follow bacterial community dynamics in organic (NOF) and chemical (NCF) fertilization regimes. RESULTS: Our results showed that bacterial diversity was higher with NOF than with NCF during drought. In particular, the ecological resilience and recovery of bacterial communities under NOF were higher than in NCF. We found these bacterial community features to enhance pathogen-inhibiting functions in NOF compared to NCF during late recovery. The other soil ecology functional analyses revealed that bacterial biomass recovered in the early stage after rewetting, while soil respiration increased continuously following prolonged time after rewetting. CONCLUSION: Together, our study indicates that organic fertilization can enhance the stability of the soil microbiome and ensures that specific bacterial-driven ecosystem functions recover after rewetting. This may provide the basis for more sustainable agricultural practices to counterbalance negative climate change-induced effects on soil functioning.


Assuntos
Microbiota , Solo , Solo/química , Secas , Microbiologia do Solo , Bactérias , Fertilizantes/análise , Fertilização
9.
Plants (Basel) ; 11(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36365269

RESUMO

Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including Gp6, Actinomarinicola, Niastella, Phaeodactylibacter, Longimicrobium, Bythopirellula, Brevundimonas, Ferruginivarius, Kushneria, Methylomarinovum, Pseudolabrys, Sphingobium, Sphingomonas, and Alterococcus. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms.

10.
Research (Wash D C) ; 2022: 9818073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204250

RESUMO

Microbial contributions to natural soil suppressiveness have been reported for a range of plant pathogens and cropping systems. To disentangle the mechanisms underlying suppression of banana Panama disease caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4), we used amplicon sequencing to analyze the composition of the soil microbiome from six separate locations, each comprised of paired orchards, one potentially suppressive and one conducive to the disease. Functional potentials of the microbiomes from one site were further examined by shotgun metagenomic sequencing after soil suppressiveness was confirmed by greenhouse experiments. Potential key antagonists involved in disease suppression were also isolated, and their activities were validated by a combination of microcosm and pot experiments. We found that potentially suppressive soils shared a common core community with relatively low levels of F. oxysporum and relatively high proportions of Myxococcales, Pseudomonadales, and Xanthomonadales, with five genera, Anaeromyxobacter, Kofleria, Plesiocystis, Pseudomonas, and Rhodanobacter being significantly enriched. Further, Pseudomonas was identified as a potential key taxon linked to pathogen suppression. Metagenomic analysis showed that, compared to the conducive soil, the microbiome in the disease suppressive soil displayed a significantly greater incidence of genes related to quorum sensing, biofilm formation, and synthesis of antimicrobial compounds potentially active against Foc4. We also recovered a higher frequency of antagonistic Pseudomonas isolates from disease suppressive experimental field sites, and their protective effects against banana Fusarium wilt disease were demonstrated under greenhouse conditions. Despite differences in location and soil conditions, separately located suppressive soils shared common characteristics, including enrichment of Myxococcales, Pseudomonadales, and Xanthomonadales, and enrichment of specific Pseudomonas populations with antagonistic activity against the pathogen. Moreover, changes in functional capacity toward an increase in quorum sensing, biofilm formation, and antimicrobial compound synthesizing involve in disease suppression.

11.
J Hazard Mater ; 439: 129704, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36104920

RESUMO

The effects of different fertilization on microbial communities and resistome in agricultural soils with a history of fresh manure application remains largely unclear. Here, soil antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and microbial communities were deciphered using metagenomics approach from a long-term field experiment with different fertilizer inputs. A total of 541 ARG subtypes were identified, with Multidrug, Macrolides-Lincosamides-Streptogramins (MLS), and Bacitracin resistance genes as the most universal ARG types. The abundance of ARGs detected in manure (2.52 ARGs/16 S rRNA) treated soils was higher than chemical fertilizer (2.42 ARGs/16 S rRNA) or compost (2.37 ARGs/16 S rRNA) amended soils. The higher abundance of MGEs and the enrichment of Proteobacteria were observed in manure treated soils than in chemical fertilizer or compost amended soils. Proteobacter and Actinobacter were recognized as the main potential hosts of ARGs revealed by network analysis. Further soil pH was identified as the key driver in determining the composition of both microbial community and resistome. The present study investigated the mechanisms driving the microbial community, MGEs and ARG profiles of long-term fertilized soils with ARGs contamination, and our findings could support strategies to manage the dissemination of soil ARGs.


Assuntos
Fertilizantes , Microbiota , Antibacterianos/farmacologia , Fertilizantes/análise , Genes Bacterianos , Esterco/microbiologia , Solo/química , Microbiologia do Solo
12.
mSystems ; 7(5): e0055922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121168

RESUMO

Global climate change has emerged as a critical environmental problem. Different types of climate extremes drive soil microbial communities to alternative states, leading to a series of consequences for soil microbial ecosystems and related functions. An effective method is urgently needed for buffering microbial communities to tackle environmental disturbances. Here, we conducted a series of mesocosm experiments in which the organic (NOF) and chemical fertilizer (NCF) long-term-amended soil microbiotas were subjected to environmental disturbances that included drought, flooding, freeze-thaw cycles, and heat. We subsequently tracked the temporal dynamics of rare and abundant bacterial taxa in NOF and NCF treatment soils to assess the efficiencies of organic amendments in recovery of soil microbiome. Our results revealed that freeze-thaw cycles and drought treatments showed weaker effects on bacterial communities than flooding and heat. The turnover between rare and abundant taxa occurred in postdisturbance succession of flooding and heat treatments, indicating that new equilibria were tightly related to the rare taxa in both NCF and NOF treatment soils. The Bayesian fits of modeling for the microbiome recovery process revealed that the stability of abundant taxa in NOF was higher than that in NCF soil. In particular, the NOF treatment soil reduced the divergence from the initial bacterial community after weak perturbations occurred. Together, we demonstrated that long-term organic input is an effective strategy to enhance the thresholds for transition to alternative states via enhancing the stability of abundant bacterial species. These findings provide a basis for the sustainable development of agricultural ecosystems in response to changing climates. IMPORTANCE Different climate extremes are expected to be a major threat to crop production, and the soil microbiome has been known to play a crucial role in agricultural ecosystems. In recent years, we have known that organic amendments are an effective method for optimizing the composition and functioning of the soil microbial community and maintaining the health of the soil ecosystem. However, the effects of organic fertilization on buffering bacterial communities against environmental disturbances and the underlying mechanisms are still unclear. We conducted a series of mesocosm experiments and showed that organic fertilizers had additional capacities in promoting the soil microbiome to withstand climate change effects. Our study provides both mechanistic insights as well as a direct guide for the sustainable development of agricultural ecosystems in response to climate change.


Assuntos
Microbiota , Solo , Solo/química , Teorema de Bayes , Microbiologia do Solo , Bactérias , Fertilizantes , Fertilização
13.
ISME J ; 16(8): 1932-1943, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35461357

RESUMO

Plant health is strongly impacted by beneficial and pathogenic plant microbes, which are themselves structured by resource inputs. Organic fertilizer inputs may thus offer a means of steering soil-borne microbes, thereby affecting plant health. Concurrently, soil microbes are subject to top-down control by predators, particularly protists. However, little is known regarding the impact of microbiome predators on plant health-influencing microbes and the interactive links to plant health. Here, we aimed to decipher the importance of predator-prey interactions in influencing plant health. To achieve this goal, we investigated soil and root-associated microbiomes (bacteria, fungi and protists) over nine years of banana planting under conventional and organic fertilization regimes differing in Fusarium wilt disease incidence. We found that the reduced disease incidence and improved yield associated with organic fertilization could be best explained by higher abundances of protists and pathogen-suppressive bacteria (e.g. Bacillus spp.). The pathogen-suppressive actions of predatory protists and Bacillus spp. were mainly determined by their interactions that increased the relative abundance of secondary metabolite Q genes (e.g. nonribosomal peptide synthetase gene) within the microbiome. In a subsequent microcosm assay, we tested the interactions between predatory protists and pathogen-suppressive Bacillus spp. that showed strong improvements in plant defense. Our study shows how protistan predators stimulate disease-suppressive bacteria in the plant microbiome, ultimately enhancing plant health and yield. Thus, we suggest a new biological model useful for improving sustainable agricultural practices that is based on complex interactions between different domains of life.


Assuntos
Eucariotos , Microbiologia do Solo , Bactérias/genética , Eucariotos/genética , Fungos/genética , Doenças das Plantas/microbiologia , Solo/química
14.
Microbiome ; 9(1): 200, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635164

RESUMO

BACKGROUND: The development of suppressive soils is a promising strategy to protect plants against soil-borne diseases in a sustainable and viable manner. The use of crop rotation and the incorporation of plant residues into the soil are known to alleviate the stress imposed by soil pathogens through dynamics changes in soil biological and physicochemical properties. However, relatively little is known about the extent to which specific soil amendments of plant residues trigger the development of plant-protective microbiomes. Here, we investigated how the incorporation of pineapple residues in soils highly infested with the banana Fusarium wilt disease alleviates the pathogen pressure via changes in soil microbiomes. RESULTS: The addition of above- and below-ground pineapple residues in highly infested soils significantly reduced the number of pathogens in the soil, thus resulting in a lower disease incidence. The development of suppressive soils was mostly related to trackable changes in specific fungal taxa affiliated with Aspergillus fumigatus and Fusarium solani, both of which displayed inhibitory effects against the pathogen. These antagonistic effects were further validated using an in vitro assay in which the pathogen control was related to growth inhibition via directly secreted antimicrobial substances and indirect interspecific competition for nutrients. The disease suppressive potential of these fungal strains was later validated using microbial inoculation in a well-controlled pot experiment. CONCLUSIONS: These results mechanistically demonstrated how the incorporation of specific plant residues into the soil induces trackable changes in the soil microbiome with direct implications for disease suppression. The incorporation of pineapple residues in the soil alleviated the pathogen pressure by increasing the relative abundance of antagonistic fungal taxa causing a negative effect on pathogen growth and disease incidence. Taken together, this study provides a successful example of how specific agricultural management strategies can be used to manipulate the soil microbiome towards the development of suppressive soils against economically important soil-borne diseases. Video Abstract.


Assuntos
Fusarium , Doenças das Plantas , Solo , Microbiologia do Solo
15.
NPJ Biofilms Microbiomes ; 7(1): 33, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846334

RESUMO

Soil microbiome manipulation can potentially reduce the use of pesticides by improving the ability of soils to resist or recover from pathogen infestation, thus generating natural suppressiveness. We simulated disturbance through soil fumigation and investigated how the subsequent application of bio-organic and organic amendments reshapes the taxonomic and functional potential of the soil microbiome to suppress the pathogens Ralstonia solanacearum and Fusarium oxysporum in tomato monocultures. The use of organic amendment alone generated smaller shifts in bacterial and fungal community composition and no suppressiveness. Fumigation directly decreased F. oxysporum and induced drastic changes in the soil microbiome. This was further converted from a disease conducive to a suppressive soil microbiome due to the application of organic amendment, which affected the way the bacterial and fungal communities were reassembled. These direct and possibly indirect effects resulted in a highly efficient disease control rate, providing a promising strategy for the control of the diseases caused by multiple pathogens.


Assuntos
Antibiose , Fusarium/fisiologia , Microbiota , Ralstonia solanacearum/fisiologia , Microbiologia do Solo , Carga Bacteriana , Biodiversidade , Interações Hospedeiro-Patógeno , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia
16.
Microbiome ; 8(1): 137, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962766

RESUMO

BACKGROUND: Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms (i.e. bioorganic fertilizers) has been shown to improve resistance against plant pathogens at least in part due to impacts on the structure and function of the resident soil microbiome. However, it remains unclear whether such improvements are driven by the specific action of microbial inoculants, microbial populations naturally resident to the organic fertilizer or the physical-chemical properties of the compost substrate. The aim of this study was to seek the ecological mechanisms involved in the disease suppressive activity of bio-organic fertilizers. RESULTS: To disentangle the mechanism of bio-organic fertilizer action, we conducted an experiment tracking Fusarium wilt disease of banana and changes in soil microbial communities over three growth seasons in response to the following four treatments: bio-organic fertilizer (containing Bacillus amyloliquefaciens W19), organic fertilizer, sterilized organic fertilizer and sterilized organic fertilizer supplemented with B. amyloliquefaciens W19. We found that sterilized bioorganic fertilizer to which Bacillus was re-inoculated provided a similar degree of disease suppression as the non-sterilized bioorganic fertilizer across cropping seasons. We further observed that disease suppression in these treatments is linked to impacts on the resident soil microbial communities, specifically by leading to increases in specific Pseudomonas spp.. Observed correlations between Bacillus amendment and indigenous Pseudomonas spp. that might underlie pathogen suppression were further studied in laboratory and pot experiments. These studies revealed that specific bacterial taxa synergistically increase biofilm formation and likely acted as a plant-beneficial consortium against the pathogen. CONCLUSION: Together we demonstrate that the action of bioorganic fertilizer is a product of the biocontrol inoculum within the organic amendment and its impact on the resident soil microbiome. This knowledge should help in the design of more efficient biofertilizers designed to promote soil function. Video Abstract.


Assuntos
Fertilizantes/microbiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas/fisiologia , Microbiologia do Solo , Solo/química , Fertilizantes/análise
17.
J Environ Manage ; 258: 110014, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929056

RESUMO

The carbon to nitrogen ratio (C/N) is well known for its importance in the composting process, however the fiber degradation and humification associated with enzymatic activity and microbial variation derived from different C/N ratios are poorly studied. Here, we designed two treatments of chicken manure with 15% (initial C/N ratio 9.61) and 50% (initial C/N ratio 17.3) rice husk to adjust the moisture of mixtures for turning feasibly by towable fertilizer turner in industrial level. Compared to the C/N ratio 9.61, the suitable C/N ratio of 17.3 significantly enhanced the composting efficiency and the final germination index (23.7%). Moreover, the suitable C/N ratio increased the relative abundance of Bacilli, which played an important role during the mesophilic and thermophilic phases. Bacilli abundance was related to cellulose and ß-glycosidase activities, thus improved fiber degradation and humification. This study not only seeks a swift method in industrial level to process chicken manure but also provides insight into the enzymatic activity of microbial community related to high-efficient composting.


Assuntos
Compostagem , Microbiota , Oryza , Animais , Galinhas , Esterco , Nitrogênio , Solo
18.
Ying Yong Sheng Tai Xue Bao ; 31(12): 4189-4196, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33393257

RESUMO

Taking banana continuous planting soil with high banana fusarium wilt disease incidence as a test site, we examined the effect of lime and ammonium carbonate fumigation coupled with bio-organic fertilizer on the suppression of banana fusarium wilt disease and the structure and composition of bacterial community, using real-time quantitative PCR and high-throughput sequencing. The results showed that the disease incidence was reduced by 13.3% and 21.7% in the treatments of LAOF (lime and ammonium carbonate fumigation coupled with organic fertilizer) and LABF (lime and ammonium carbonate fumigation coupled with bio-organic fertilizer), respectively, compared with OF (application of organic fertilizer without fumigation), while the copy number of Fusarium was decreased by 22.4% and 33.0%, respectively. Compared with non-fumigation treatment, lime and ammonium fumigation coupled with different fertilizer applications significantly reduced bacteria richness and diversity, with different community structure, while fumigation had a decisive effect on bacterial community composition. Bacterial richness and diversity of LABF were lower than those of other treatments, while microbial community structure was clearly disparate from other treatments. Compared with non-fumigation treatment, the relative abundance of Mizugakiibacter, Brucella, and Rhodanobacter were significantly improved in the fumigation coupled with different fertilization treatments. Those three genera in LABF were higher than those in LAOF, with significant differences for the relative abundances of Mizugakiibacter and Brucella. Therefore, fumigation combined with bio-organic fertilizer application could reduce the copy number of pathogen, alter soil bacterial community structure and stimulate beneficial bacteria in the resident soil, and thus reduce the occurrence of banana fusarium wilt.


Assuntos
Fusarium , Musa , Bactérias/genética , Compostos de Cálcio , Carbonatos , Fertilizantes , Fumigação , Óxidos , Doenças das Plantas , Solo , Microbiologia do Solo
19.
Front Microbiol ; 10: 2535, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781059

RESUMO

Soil-borne diseases, especially those caused by fungal pathogens, lead to profound annual yield losses. One key example for such a disease is Fusarium wilt disease in banana. In some soils, plants do not show disease symptoms, even if the disease-causing pathogens are present. However, the underlying agents that make soils suppressive against Fusarium wilt remain elusive. In this study, we aimed to determine the underlying microbial agents governing soil disease-suppressiveness. We traced the shift of microbiomes during the invasion of disease-causing Fusarium oxysporum f. sp. cubense in disease-suppressive and disease-conducive soils. We found distinct microbiome structures in the suppressive and conducive soils after pathogen invasion. The alpha diversity indices increased (or did not significantly change) and decreased, respectively, in the suppressive and conducive soils, indicating that the shift pattern of the microbiome with pathogen invasion was notably different between the suppressive and conductive soils. Microbiome networks were more complex with higher numbers of links and revealed more negative links, especially between bacterial taxa and the disease-causing Fusarium, in suppressive soils than in conducive soils. We identified the bacterial genera Chryseolinea, Terrimonas, and Ohtaekwangia as key groups that likely confer suppressiveness against disease-causing Fusarium. Overall, our study provides the first insights into agents potentially underlying the disease suppressiveness of soils against Fusarium wilt pathogen invasion. The results of this study may help to guide efforts for targeted cultivation and application of these potential biocontrol agents, which might lead to the development of effective biocontrol agents against Fusarium wilt disease.

20.
AMB Express ; 9(1): 179, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31707479

RESUMO

Survival of inoculated fungal strains in a new environment plays a critical role in functional performance, but few studies have focused on strain-specific quantitative PCR (qPCR) methods for monitoring beneficial fungi. In this study, the Trichoderma guizhouense strain NJAU 4742 (transformed with the gfp gene and named gfp-NJAU 4742), which exhibits a growth-promoting effect by means of phytohormone production and pathogen antagonism, was selected as a model to design strain-specific primer pairs using two steps of genomic sequence comparison to detect its abundance in soil. After a second comparison with the closely related species T. harzianum CBS 226-95 to further differentiate the strain-specific fragments that had shown no homology to any sequence deposited in the databases used in the first comparison, ten primer pairs were designed from the whole genome. Meanwhile, 3 primer pairs, P11, P12 and P13, were also designed from the inserted fragment containing the gfp gene. After verification testing with three types of field soils, primer pairs P6, P7 and P8 were further selected by comparison with P11, P12 and P13. A practical test using a pot experiment showed that stable colonization of gfp-NJAU 4742 in pepper rhizosphere soil could be detected using primer pairs P6 and P7, showing no significant difference from the results of primers P11 and P12. Hence, the strategy described here for designing fungal-strain-specific primers may theoretically be used for any other fungi for which the whole genome sequence is available in a database, and the qPCR methodology developed can also be used to further monitor the population dynamics of different strains based on the designed primers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...